
KramersMoyal
Release 0.4

Aug 25, 2023

Contents

1 Installation 3

2 A one-dimensional stochastic process 5
2.1 The theory . 5
2.2 Integrating an Ornstein—Uhlenbeck process . 5
2.3 Using kramersmoyal . 6

3 A two-dimensional diffusion process 9
3.1 Theory . 9
3.2 Integrating a 2-dimensional process . 9
3.3 Back to kramersmoyal and the Kramers—Moyal coefficients . 10

4 Table of Content 13
4.1 Installation . 13
4.2 A one-dimensional stochastic process . 13
4.3 A two-dimensional diffusion process . 15
4.4 Functions . 18
4.5 License . 20
4.6 Contact . 21

5 Literature 23

6 Funding 25

Bibliography 27

Index 29

i

ii

KramersMoyal, Release 0.4

kramersmoyal is a python package designed to obtain the Kramers—Moyal coefficients, or conditional moments,
from stochastic data of any dimension. It employs kernel density estimations, instead of a histogram approach, to
ensure better results for low number of points as well as allowing better fitting of the results.

Contents 1

KramersMoyal, Release 0.4

2 Contents

CHAPTER 1

Installation

To install kramersmoyal, just use pip

pip install kramersmoyal

Then on your favourite editor just use

from kramersmoyal import km

From here you can simply call

import numpy as np

Number of bins
bins = np.array([6000])

Choose powers to calculate
powers = np.array([[1], [2]])

And here x is your (1D, 2D, 3D) data
kmc, edge = km(x, bins = bins, powers = powers)

The library depends on numpy and scipy.

3

KramersMoyal, Release 0.4

4 Chapter 1. Installation

CHAPTER 2

A one-dimensional stochastic process

2.1 The theory

Take, for example, the well-documented one-dimension Ornstein—Uhlenbeck process, also known as Vašíček process.
This process is governed by two main parameters: the mean-reverting parameter 𝜃 and the diffusion or volatility
coefficient 𝜎

d𝑦(𝑡) = −𝜃𝑦(𝑡)d𝑡+ 𝜎d𝑊 (𝑡)

which can be solved in various ways. For our purposes, recall that the drift coefficient, i.e., the first-order
Kramers—Moyal coefficient, is given by ℳ[1](𝑦) = −𝜃𝑦 and the second-order Kramers—Moyal coefficient is
ℳ[2](𝑦) = 𝜎2/2, i.e., the diffusion.

For this example let’s take 𝜃 = 0.3 and 𝜎 = 0.1, over a total time of 500 units, with a sampling of 1000 Hertz, and
from the generated data series retrieve the two parameters, the drift −𝜃𝑦(𝑡) and diffusion 𝜎.

2.2 Integrating an Ornstein—Uhlenbeck process

Here is a short code on generating a Ornstein—Uhlenbeck stochastic trajectory with a simple Euler–Maruyama inte-
gration method

integration time and time sampling
t_final = 500
delta_t = 0.001

The parameters theta and sigma
theta = 0.3
sigma = 0.1

The time array of the trajectory
time = np.arange(0, t_final, delta_t)

(continues on next page)

5

https://en.wikipedia.org/wiki/Ornstein%E2%80%93Uhlenbeck_process

KramersMoyal, Release 0.4

(continued from previous page)

Initialise the array y
y = np.zeros(time.size)

Generate a Wiener process
dw = np.random.normal(loc = 0, scale = np.sqrt(delta_t), size = time.size)

Integrate the process
for i in range(1,time.size):

y[i] = y[i-1] - theta*y[i-1]*delta_t + sigma*dw[i]

From here we have a plain example of an Ornstein—Uhlenbeck process, always drifting back to zero, due to the
mean-reverting drift −𝜃𝑦(𝑡). The effect of the noise can be seen across the whole trajectory.

2.3 Using kramersmoyal

Take the timeseries 𝑦(𝑡) and let’s study the Kramers—Moyal coefficients. For this let’s look at the drift and diffusion
coefficients of the process, i.e., the first and second Kramers—Moyal coefficients, with an epanechnikov kernel

Choose number of points of you target space
bins = np.array([5000])

Choose powers to calculate
powers = np.array([[1], [2]])

Choose your desired bandwith
bw = 0.15

The kmc holds the results, where edges holds the binning space
kmc, edges = km(y, kernel = kernels.epanechnikov, bw = bw, bins = bins, powers =
→˓powers)

This results in

6 Chapter 2. A one-dimensional stochastic process

KramersMoyal, Release 0.4

Notice here that to obtain the Kramers—Moyal coefficients you need to divide kmc by the timestep delta_t. This
normalisation stems from the Taylor-like approximation, i.e., the Kramers—Moyal expansion (𝛿𝑡 → 0).

2.3. Using kramersmoyal 7

KramersMoyal, Release 0.4

8 Chapter 2. A one-dimensional stochastic process

CHAPTER 3

A two-dimensional diffusion process

3.1 Theory

A two-dimensional diffusion process is a stochastic process that comprises two 𝑊 (𝑡) and allows for a mixing of these
noise terms across its two dimensions.(︂

d𝑦1(𝑡)
d𝑦2(𝑡)

)︂
=

(︂
𝑁1(𝑦)
𝑁2(𝑦)

)︂
d𝑡+

(︂
𝑔1,1(𝑦) 𝑔1,2(𝑦)
𝑔2,1(𝑦) 𝑔2,2(𝑦)

)︂(︂
d𝑊1

d𝑊2

)︂
with 𝑁 the drift vector and 𝑔 the diffusion matrix, which can be state dependent. We define, as the previous example,
a process identical to the Ornstein—Uhlenbeck process, with

𝑁 =

(︂
−𝑁1𝑦1
−𝑁2𝑦2

)︂
and we take 𝑁1 = 2.0 and 𝑁2 = 1.0. For this particular case a more involved diffusion matrix 𝑔 will be used. Let the
matrix 𝑔 be state-dependent, i.e., dependent of the actual values of 𝑦1 and 𝑦2 via

𝑔 =

(︃ 𝑔1,1

1+𝑒𝑦
2
1

𝑔1,2

𝑔2,1
𝑔2,2

1+𝑒𝑦
2
2

)︃

and we will take 𝑔1,1 = 𝑔2,2 = 0.5 and 𝑔1,2 = 𝑔2,1 = 0.

3.2 Integrating a 2-dimensional process

Taking the above parameters and writing again an Euler–Maruyama integration method

integration time and time sampling
t_final = 2000
delta_t = 0.001

(continues on next page)

9

KramersMoyal, Release 0.4

(continued from previous page)

Define the drift vector N
N = np.array([2.0, 1.0])

Define the diffusion matrix g
g = np.array([[0.5, 0.0], [0.0, 0.5]])

The time array of the trajectory
time = np.arange(0, t_final, delta_t)

Initialise the array y
y = np.zeros([time.size, 2])

Generate two Wiener processes with a scale of np.sqrt(delta_t)
dW = np.random.normal(loc = 0, scale = np.sqrt(delta_t), size = [time.size, 2])

Integrate the process (takes about 20 secs)
for i in range(1, time.size):

y[i,0] = y[i-1,0] - N[0] * y[i-1,0] * delta_t + g[0,0]/(1 + np.exp(y[i-1,
→˓0]**2)) * dW[i,0] + g[0,1] * dW[i,1]

y[i,1] = y[i-1,1] - N[1] * y[i-1,1] * delta_t + g[1,0] * dW[i,0] + g[1,1]/(1
→˓+ np.exp(y[i-1,1]**2)) * dW[i,1]

The stochastic trajectory in 2 dimensions for 10 time units (10000 data points)

3.3 Back to kramersmoyal and the Kramers—Moyal coefficients

First notice that all the results now will be two-dimensional surfaces, so we will need to plot them as such

Choose the size of your target space in two dimensions
bins = np.array([300, 300])

Introduce the desired orders to calculate, but in 2 dimensions
powers = np.array([[0,0], [1,0], [0,1], [1,1], [2,0], [0,2], [2,2]])
insert into kmc: 0 1 2 3 4 5 6

(continues on next page)

10 Chapter 3. A two-dimensional diffusion process

KramersMoyal, Release 0.4

(continued from previous page)

Notice that the first entry in [,] is for the first dimension, the
second for the second dimension...

Choose a desired bandwidth bw
bw = 0.1

Calculate the KramersMoyal coefficients
kmc, edges = km(y, bw = bw, bins = bins, powers = powers)

The KM coefficients are stacked along the first dim of the
kmc array, so kmc[1,...] is the first KM coefficient, kmc[2,...]
is the second. These will be 2-dimensional matrices.

Now one can visualise the Kramers–Moyal coefficients (surfaces) in green and the respective theoretical surfaces in
black. (Don’t forget to normalise: kmc / delta_t).

3.3. Back to kramersmoyal and the Kramers—Moyal coefficients 11

KramersMoyal, Release 0.4

12 Chapter 3. A two-dimensional diffusion process

CHAPTER 4

Table of Content

4.1 Installation

To install kramersmoyal, just use pip

pip install kramersmoyal

Then on your favourite editor just use

from kramersmoyal import km

From here you can simply call

import numpy as np

Number of bins
bins = np.array([6000])

Choose powers to calculate
powers = np.array([[1], [2]])

And here x is your (1D, 2D, 3D) data
kmc, edge = km(x, bins = bins, powers = powers)

The library depends on numpy and scipy.

4.2 A one-dimensional stochastic process

4.2.1 The theory

Take, for example, the well-documented one-dimension Ornstein—Uhlenbeck process, also known as Vašíček process.
This process is governed by two main parameters: the mean-reverting parameter 𝜃 and the diffusion or volatility

13

https://en.wikipedia.org/wiki/Ornstein%E2%80%93Uhlenbeck_process

KramersMoyal, Release 0.4

coefficient 𝜎

d𝑦(𝑡) = −𝜃𝑦(𝑡)d𝑡+ 𝜎d𝑊 (𝑡)

which can be solved in various ways. For our purposes, recall that the drift coefficient, i.e., the first-order
Kramers—Moyal coefficient, is given by ℳ[1](𝑦) = −𝜃𝑦 and the second-order Kramers—Moyal coefficient is
ℳ[2](𝑦) = 𝜎2/2, i.e., the diffusion.

For this example let’s take 𝜃 = 0.3 and 𝜎 = 0.1, over a total time of 500 units, with a sampling of 1000 Hertz, and
from the generated data series retrieve the two parameters, the drift −𝜃𝑦(𝑡) and diffusion 𝜎.

4.2.2 Integrating an Ornstein—Uhlenbeck process

Here is a short code on generating a Ornstein—Uhlenbeck stochastic trajectory with a simple Euler–Maruyama inte-
gration method

integration time and time sampling
t_final = 500
delta_t = 0.001

The parameters theta and sigma
theta = 0.3
sigma = 0.1

The time array of the trajectory
time = np.arange(0, t_final, delta_t)

Initialise the array y
y = np.zeros(time.size)

Generate a Wiener process
dw = np.random.normal(loc = 0, scale = np.sqrt(delta_t), size = time.size)

Integrate the process
for i in range(1,time.size):

y[i] = y[i-1] - theta*y[i-1]*delta_t + sigma*dw[i]

From here we have a plain example of an Ornstein—Uhlenbeck process, always drifting back to zero, due to the
mean-reverting drift −𝜃𝑦(𝑡). The effect of the noise can be seen across the whole trajectory.

14 Chapter 4. Table of Content

KramersMoyal, Release 0.4

4.2.3 Using kramersmoyal

Take the timeseries 𝑦(𝑡) and let’s study the Kramers—Moyal coefficients. For this let’s look at the drift and diffusion
coefficients of the process, i.e., the first and second Kramers—Moyal coefficients, with an epanechnikov kernel

Choose number of points of you target space
bins = np.array([5000])

Choose powers to calculate
powers = np.array([[1], [2]])

Choose your desired bandwith
bw = 0.15

The kmc holds the results, where edges holds the binning space
kmc, edges = km(y, kernel = kernels.epanechnikov, bw = bw, bins = bins, powers =
→˓powers)

This results in

Notice here that to obtain the Kramers—Moyal coefficients you need to divide kmc by the timestep delta_t. This
normalisation stems from the Taylor-like approximation, i.e., the Kramers—Moyal expansion (𝛿𝑡 → 0).

4.3 A two-dimensional diffusion process

4.3.1 Theory

A two-dimensional diffusion process is a stochastic process that comprises two 𝑊 (𝑡) and allows for a mixing of these
noise terms across its two dimensions.(︂

d𝑦1(𝑡)
d𝑦2(𝑡)

)︂
=

(︂
𝑁1(𝑦)
𝑁2(𝑦)

)︂
d𝑡+

(︂
𝑔1,1(𝑦) 𝑔1,2(𝑦)
𝑔2,1(𝑦) 𝑔2,2(𝑦)

)︂(︂
d𝑊1

d𝑊2

)︂
with 𝑁 the drift vector and 𝑔 the diffusion matrix, which can be state dependent. We define, as the previous example,
a process identical to the Ornstein—Uhlenbeck process, with

𝑁 =

(︂
−𝑁1𝑦1
−𝑁2𝑦2

)︂

4.3. A two-dimensional diffusion process 15

KramersMoyal, Release 0.4

and we take 𝑁1 = 2.0 and 𝑁2 = 1.0. For this particular case a more involved diffusion matrix 𝑔 will be used. Let the
matrix 𝑔 be state-dependent, i.e., dependent of the actual values of 𝑦1 and 𝑦2 via

𝑔 =

(︃ 𝑔1,1

1+𝑒𝑦
2
1

𝑔1,2

𝑔2,1
𝑔2,2

1+𝑒𝑦
2
2

)︃

and we will take 𝑔1,1 = 𝑔2,2 = 0.5 and 𝑔1,2 = 𝑔2,1 = 0.

4.3.2 Integrating a 2-dimensional process

Taking the above parameters and writing again an Euler–Maruyama integration method

integration time and time sampling
t_final = 2000
delta_t = 0.001

Define the drift vector N
N = np.array([2.0, 1.0])

Define the diffusion matrix g
g = np.array([[0.5, 0.0], [0.0, 0.5]])

The time array of the trajectory
time = np.arange(0, t_final, delta_t)

Initialise the array y
y = np.zeros([time.size, 2])

Generate two Wiener processes with a scale of np.sqrt(delta_t)
dW = np.random.normal(loc = 0, scale = np.sqrt(delta_t), size = [time.size, 2])

Integrate the process (takes about 20 secs)
for i in range(1, time.size):

y[i,0] = y[i-1,0] - N[0] * y[i-1,0] * delta_t + g[0,0]/(1 + np.exp(y[i-1,
→˓0]**2)) * dW[i,0] + g[0,1] * dW[i,1]

y[i,1] = y[i-1,1] - N[1] * y[i-1,1] * delta_t + g[1,0] * dW[i,0] + g[1,1]/(1
→˓+ np.exp(y[i-1,1]**2)) * dW[i,1]

The stochastic trajectory in 2 dimensions for 10 time units (10000 data points)

16 Chapter 4. Table of Content

KramersMoyal, Release 0.4

4.3.3 Back to kramersmoyal and the Kramers—Moyal coefficients

First notice that all the results now will be two-dimensional surfaces, so we will need to plot them as such

Choose the size of your target space in two dimensions
bins = np.array([300, 300])

Introduce the desired orders to calculate, but in 2 dimensions
powers = np.array([[0,0], [1,0], [0,1], [1,1], [2,0], [0,2], [2,2]])
insert into kmc: 0 1 2 3 4 5 6

Notice that the first entry in [,] is for the first dimension, the
second for the second dimension...

Choose a desired bandwidth bw
bw = 0.1

Calculate the KramersMoyal coefficients
kmc, edges = km(y, bw = bw, bins = bins, powers = powers)

The KM coefficients are stacked along the first dim of the
kmc array, so kmc[1,...] is the first KM coefficient, kmc[2,...]
is the second. These will be 2-dimensional matrices.

Now one can visualise the Kramers–Moyal coefficients (surfaces) in green and the respective theoretical surfaces in
black. (Don’t forget to normalise: kmc / delta_t).

4.3. A two-dimensional diffusion process 17

KramersMoyal, Release 0.4

4.4 Functions

Documentation for all the functions in kramersmoyal.

4.4.1 Kramers—Moyal coefficients

kramersmoyal.kmc.km(timeseries: numpy.ndarray, bins: str = ’default’, powers: int = 4, kernel:
callable = <function epanechnikov>, bw: float = None, tol: float = 1e-10,
conv_method: str = ’auto’, center_edges: bool = True, full: bool = False) ->
(<class ’numpy.ndarray’>, <class ’numpy.ndarray’>)

Estimates the Kramers Moyal coefficients from a timeseries using a kernel estimator method. km can calculate
the Kramers Moyal coefficients for a timeseries of any dimension, up to any desired power.

Parameters

• timeseries (np.ndarray) – The D-dimensional timeseries (N, D). The timeseries of
length N and dimensions D.

• bins (int or list or np.ndarray or string (default default)) – The number of bins. This is the
underlying space for the Kramers Moyal coefficients to be estimated. If desired, bins along
each dimension can be given as monotonically increasing bin edges (tuple or list), e.g.,

18 Chapter 4. Table of Content

KramersMoyal, Release 0.4

– in 1-D, (np.linspace(lower, upper, length),);

– in 2-D, ‘(np.linspace(lower_x, upper_x, length_x), np.linspace(lower_y, upper_y,
length_y))‘,

with desired lower and upper ranges (in each dimension). If default, the bin numbers for
different dimensions are:

– 1-D, 5000;

– 2-D, 100×100;

– 3-D, 25×25×25.

The bumber of bins along each dimension can be specified, e.g.,

– 2-D, [125, 75],

– 3-D, [100, 80, 120].

If bins is int, or a list or np.array of dimension 1, and the timeseries dimension is D, then
int(bins**(1/D)).

• powers (int or list or tuple or np.ndarray (default 4)) – Powers for the operation of cal-
culating the Kramers Moyal coefficients. Default is the largest power used, e.g., if 4, then
(0, 1, 2, 3, 4). They can be specified, matching the dimensions of the timeseries. E.g., in
1-dimension the first four Kramers Moyal coefficients can be given as powers=(0, 1, 2, 3,
4), which is the same as powers=4. Setting powers=p for higher dimensions will results in
all possible combinations up to the desired power ‘p’, e.g.

– 2-D, powers=2 results in

powers = np.array([[0, 0, 1, 1, 0, 1, 2, 2, 2], [0, 1, 0, 1, 2, 2, 0, 1, 2]]).T

Set full=True to output powers. The order that they appear dictactes the order in the output
kmc.

• kernel (callable (default epanechnikov)) – Kernel used to convolute with the Kramers-
Moyal coefficients. To select for example a Gaussian kernel use

kernel = kernels.gaussian

• bw (float (default None)) – Desired bandwidth of the kernel. A value of 1 occupies the full
space of the bin space. Recommended are values 0.005 < bw < 0.5. Set full=True to output
bw.

• tol (float (default 1e-10)) – Round to zero absolute values smaller than tol, after the con-
volutions.

• conv_method (str (default auto)) – A string indicating which method to use to calculate
the convolution. https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.convolve.
html

• center_edges (bool (default True)) – Whether to return the bin centers or the bin edges
(since for n bins there are n + 1 edges).

• full (bool (default False)) – Outputs bandwidth bw and powers powers.

Returns

• kmc (np.ndarray) – The calculated Kramers Moyal coefficients in accordance to the time-
series dimensions in (D, bins.shape) shape. To extract the selected orders of the kmc, use
kmc[i,. . .], with i the order according to powers.

4.4. Functions 19

https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.convolve.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.convolve.html

KramersMoyal, Release 0.4

• edges (np.ndarray) – The bin edges with shape (D, bins.shape) of the estimated
Kramers Moyal coefficients.

• (. . . , bw, powers) (tuple) – This is only returned if full=True:

– The bandwidth bw,

– An array of the powers.

References

drift and diffusion coefficients of stochastic processes.” Physics Letters A 373(39), 3507 3512, 2009.

4.4.2 Kernels

kramersmoyal.kernels.kernel(kernel_func)
Transforms a kernel function into a scaled kernel function (for a certain bandwidth bw)

Currently implemented kernels are: Epanechnikov, Gaussian, Uniform, Triangular, Quartic

For a good overview of various kernels see https://en.wikipedia.org/wiki/Kernel_(statistics)

kramersmoyal.kernels.epanechnikov(x: numpy.ndarray, dims: int)→ numpy.ndarray
The Epanechnikov kernel in dimensions dims.

kramersmoyal.kernels.gaussian(x: numpy.ndarray, dims: int)→ numpy.ndarray
Gaussian kernel in dimensions dims.

kramersmoyal.kernels.uniform(x: numpy.ndarray, dims: int)→ numpy.ndarray
Uniform, or rectangular kernel in dimensions dims.

kramersmoyal.kernels.triagular(x: numpy.ndarray, dims: int)→ numpy.ndarray
Triagular kernel in dimensions dims.

kramersmoyal.kernels.quartic(x: numpy.ndarray, dims: int)→ numpy.ndarray
Quartic, or biweight kernel in dimensions dims.

4.4.3 Helping functions

Binning function

The binning function has no documentation

4.5 License

MIT License

Copyright (c) 2019–2023 Leonardo Rydin Gorjão

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

20 Chapter 4. Table of Content

https://en.wikipedia.org/wiki/Kernel_(statistics

KramersMoyal, Release 0.4

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

4.6 Contact

If you need help with something, find a bug, issue, or typo on the repository or in the code, you can contact me here:
leonardo.rydin@gmail.com or open an issue on the GitHub repository.

4.6. Contact 21

mailto:leonardo.rydin@gmail.com

KramersMoyal, Release 0.4

22 Chapter 4. Table of Content

CHAPTER 5

Literature

1 Friedrich, R., Peinke, J., Sahimi, M., Tabar, M. R. R. Approaching complexity by stochastic methods: From biological
systems to turbulence, [Phys. Rep. 506, 87–162 (2011)](https://doi.org/10.1016/j.physrep.2011.05.003).

The study of stochastic processes from a data-driven approach is grounded in extensive mathematical work. From the
applied perspective there are several references to understand stochastic processes, the Fokker—Planck equations, and
the Kramers—Moyal expansion

Tabar, M. R. R. (2019). Analysis and Data-Based Reconstruction of Complex Nonlinear Dynamical Systems.
Springer, International Publishing
Risken, H. (1989). The Fokker–Planck equation. Springer, Berlin, Heidelberg.
Gardiner, C.W. (1985). Handbook of Stochastic Methods. Springer, Berlin.

An extensive review on the subject can be found here.

23

https://doi.org/10.1016/j.physrep.2011.05.003
http://sharif.edu/~rahimitabar/pdfs/80.pdf

KramersMoyal, Release 0.4

24 Chapter 5. Literature

CHAPTER 6

Funding

Helmholtz Association Initiative Energy System 2050 - A Contribution of the Research Field Energy and the grant
No. VH-NG-1025 and STORM - Stochastics for Time-Space Risk Models project of the Research Council of Norway
(RCN) No. 274410.

25

KramersMoyal, Release 0.4

26 Chapter 6. Funding

Bibliography

[Lamouroux2009] D. Lamouroux and K. Lehnertz, “Kernel-based regression of

27

KramersMoyal, Release 0.4

28 Bibliography

Index

E
epanechnikov() (in module kramersmoyal.kernels),

20

G
gaussian() (in module kramersmoyal.kernels), 20

K
kernel() (in module kramersmoyal.kernels), 20
km() (in module kramersmoyal.kmc), 18
kramersmoyal.kernels (module), 20
kramersmoyal.kmc (module), 18

Q
quartic() (in module kramersmoyal.kernels), 20

T
triagular() (in module kramersmoyal.kernels), 20

U
uniform() (in module kramersmoyal.kernels), 20

29

	Installation
	A one-dimensional stochastic process
	The theory
	Integrating an Ornstein—Uhlenbeck process
	Using kramersmoyal

	A two-dimensional diffusion process
	Theory
	Integrating a 2-dimensional process
	Back to kramersmoyal and the Kramers—Moyal coefficients

	Table of Content
	Installation
	A one-dimensional stochastic process
	A two-dimensional diffusion process
	Functions
	License
	Contact

	Literature
	Funding
	Bibliography
	Index

